skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Berndsen, Christopher E"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT Starch accumulation in plants provides carbon for nighttime use, for regrowth after periods of dormancy, and for times of stress. Both ɑ‐ and β‐amylases (AMYs and BAMs, respectively) catalyze starch hydrolysis, but their functional roles are unclear. Moreover, the presence of catalytically inactive amylases that show starch excess phenotypes when deleted presents questions on how starch degradation is regulated. Plants lacking one of these catalytically inactive β‐amylases, BAM9, have enhanced starch accumulation when combined with mutations in BAM1 and BAM3, the primary starch degrading BAMs in response to stress and at night, respectively. BAM9 has been reported to be transcriptionally induced by stress although the mechanism for BAM9 function is unclear. From yeast two‐hybrid experiments, we identified the plastid‐localized AMY3 as a potential interaction partner for BAM9. We found that BAM9 interacted with AMY3 in vitro and that BAM9 enhances AMY3 activity about three‐fold. Modeling of the AMY3‐BAM9 complex predicted a previously undescribed alpha–alpha hairpin in AMY3 that could serve as a potential interaction site. Additionally, AMY3 lacking the alpha–alpha hairpin is unaffected by BAM9. Structural analysis of AMY3 showed that it can form a homodimer in solution and that BAM9 appears to replace one of the AMY3 monomers to form a heterodimer. The presence of both BAM9 and AMY3 in many vascular plant lineages, along with model‐based evidence that they heterodimerize, suggests that the interaction is conserved. Collectively these data suggest that BAM9 is a pseudoamylase that activates AMY3 in response to cellular stress, possibly facilitating stress recovery. 
    more » « less
    Free, publicly-accessible full text available June 1, 2026
  2. The process for and regulatory mechanism controlling the synthesis and degradation of the polysaccharide starch are only superficially understood. β-amylases (BAMs) are enzymes that hydrolyze starch into maltose which is further used to drive metabolism and other cellular processes. Most BAMs in plants can function as monomeric enzymes and have hyperbolic kinetics. BAM2 from Arabidopsis thaliana is unusual as it forms a homotetramer, displays sigmoidal kinetics, and is stimulated by the presence of potassium cations (K+). We used circular dichroism spectroscopy, small-angle X-Ray scattering, and molecular dynamics to investigate the effect of K+ on the structure of BAM2 and found that K+ induces the formation of an active conformation of BAM2 thereby increasing its activity. 
    more » « less
  3. Starch accumulates in the plastids of green plant tissues during the day to provide carbon for metabolism at night. Starch hydrolysis is catalyzed by members of the β-amylase (BAM) family, which in Arabidopsis thaliana (At) includes nine structurally and functionally diverse members. One of these enzymes, AtBAM2, is a plastid-localized enzyme that is unique among characterized β-amylases since it is tetrameric and exhibits sigmoidal kinetics. Sequence alignments show that the BAM domains of AtBAM7, a catalytically inactive, nuclear-localized transcription factor with an N-terminal DNA-binding domain, and AtBAM2 are more closely related to each other than they are to any other AtBAM. Since the BAM2 gene is found in more ancient lineages, it was hypothesized that the BAM7 gene evolved from BAM2 . However, analysis of the genomes of 48 flowering plants revealed 12 species that appear to possess a BAM7 gene but lack a BAM2 gene. Upon closer inspection, these BAM7 proteins have a greater percent identity to AtBAM2 than to AtBAM7, and they share all of the AtBAM2 functional residues that BAM7 proteins normally lack. It is hypothesized that these genes may encode BAM2-like proteins although they are currently annotated as BAM7-like genes. To test this hypothesis, a cDNA for the short form of corn BAM7 (ZmBAM7-S) was designed for expression in Escherichia coli . Small-angle X-ray scattering data indicate that ZmBAM7-S has a tetrameric solution structure that is more similar to that of AtBAM2 than to that of AtBAM1. In addition, partially purified ZmBAM7-S is catalytically active and exhibits sigmoidal kinetics. Together, these data suggest that some BAM7 genes may encode a functional BAM2. Exploring and understanding the β-amylase gene structure could have an impact on the current annotation of genes. 
    more » « less